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Abstract

Background Planning an osteotomy or arthroplasty surgery on a lower limb requires prior classification/iden-
tification of its deformities. The detection of skeletal landmarks and the calculation of angles required to identify

the deformities are traditionally done manually, with measurement accuracy relying considerably on the experience
of the individual doing the measurements. We propose a novel, image pyramid-based approach to skeletal landmark
detection.

Methods The proposed approach uses a Convolutional Neural Network (CNN) that receives the raw X-ray image

as input and produces the coordinates of the landmarks. The landmark estimations are modified iteratively

via the error feedback method to come closer to the target. Our clinically produced full-leg X-Rays dataset is made
publically available and used to train and test the network. Angular quantities are calculated based on detected land-
marks. Angles are then classified as lower than normal, normal or higher than normal according to predefined ranges
for a normal condition.

Results The performance of our approach is evaluated at several levels: landmark coordinates accuracy, angles’
measurement accuracy, and classification accuracy. The average absolute error (difference between automatically
and manually determined coordinates) for landmarks was 0.79+0.57 mm on test data, and the average absolute error
(difference between automatically and manually calculated angles) for angles was 0.45 +0.42°.

Conclusions Results from multiple case studies involving high-resolution images show that the proposed approach
outperforms previous deep learning-based approaches in terms of accuracy and computational cost. It also enables
the automatic detection of the lower limb misalignments in full-leg x-ray images.

Keywords Skeletal landmark detection, Lower limb deformities, Osteotomy, Arthroplasty surgery, Convolutional
neural networks

Background

A lower limb deformity is commonly defined as the
deviation of the limb’s physiological axis from its normal
condition. Those deformities may be congenital or con-

*Correspondence: stitutional in origin. Children may experience them due
r\r:?;zﬁgtég'ta;fﬁ nahi to a growth condition that causes the epiphyseal plate to
' School of Mechanical Engineering, College of Engineering, University close too soon. They could also be linked to traumatic
of Tehran, Tefran, Iran events, metabolic disorders like rickets or such osteopa-

Firoozabadi Clinical Research Development Unit (FACRDU), Iran . . . .
University of Medical Sciences (UMS), Tehran, Iran thies as rfsnal osteopathy. Neurologic diseases or systemic
3 Rad Radiology and Sonography Clinic, Tehran, Iran myopathies may also be connected [1].

©The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12891-025-08784-9&domain=pdf
http://orcid.org/0009-0005-6195-1015

Rostamian et al. BMC Musculoskeletal Disorders (2025) 26:521

The alignment of the lower limbs is assessed using a
full-length standing anteroposterior (AP) projection
radiograph [1]. Quantities of importance, such as the
anatomical and mechanical axes of the femur and tibia,
the femoral condyle tangent, and the tibia plateau tan-
gent, are used to determine parameters related to the
lower limb alignment. Following the stated quantities of
interest, the typical parameters describing the lower limb
alignment are calculated from lower limb frontal X-ray
images (Fig. 1) [2-5]:

+ Mechanical femoral mechanical tibial angle
(MEMTA) is the angle between the mechanical axes
of the femur and tibia with a normal range of (—2°,4°).

+ Mechanical lateral distal femoral angle (MLDFA) is
the angle between the femoral condyle tangent and
the mechanical axis of the femur with a normal range
of (85°,90°).

Fig. 1 Typical measurements describing the lower limb, obtained
from a frontal X-ray image: MFMTA, MLDFA, MPTA, LDTA, and JLCA
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+ Mechanical proximal tibial angle (MPTA) is the angle
between the tangent to the tibial plateau and the
anatomical axis of the tibia with a normal range of
(85°,90°).

+ Lateral distal tibial angle (LDTA) is the angle between
the distal tibial articular surface and the anatomical
axis of the tibia, which measures lateral distal tibial
angle with a normal range of (86°,92°).

+ Joint line convergence angle (JLCA) is the angle
formed between a line tangential to the distal femoral
condyle and the tibial plateau with a normal range of
(0°2°) [1, 6]

Orthopedic surgeons typically review radiography in
AP projection with the individual standing up straight to
support body weight to detect lower limb abnormalities
in patients. However, modern technological advance-
ments allow the employment of semi-automated and
automatic procedures where accuracy and productiv-
ity are independent of the human experience [1, 7-11].
Recent works with a deep learning approach utilize two
independent networks for a region of interest extraction
and landmark detection, respectively [12]. Nguyen et al.
suggested a decentralized deep learning system for com-
puting the angles of angle between the femoral mechani-
cal and anatomical axes (FAMA), hip-knee-ankle (HKA),
MLDEFA, and MPTA angle computation from full-leg
radiographs. First, regions of interest around each joint
are detected using a convolutional neural network
(CNN). Then, by employing a second CNN, landmark
coordinates are computed [8]. Pei et al. presented a
U-net-based method to evaluate the HKA angle on uni-
lateral lower limb X-rays. The different joints like hip,
knee, and ankle were segmented using a U-net. The seg-
mentations are utilized to identify the joints’ centers.
These points were used to estimate the HKA angle [13] A
method for determining HKA angles from full-leg radio-
graphs was put out by Tack et al. The YOLOv4 was used
in their method to identify regions of interest in joints.
After that, each detected region of interest was regressed
using ResNet to find landmark coordinates. Then, HKA
angle was calculated using the identified landmarks [7].

Based on expert human landmarking patterns, we pro-
vide an image pyramid-based approach for landmark
regression and angle measurement to assess lower limb
deformities. This approach is inspired by the reinforce-
ment learning strategy used for supervised learning
tasks [14]. On our publicly accessible data from a local
imaging center, we compare our estimates for landmark
coordinates with those of human specialists to assess
the accuracy of our approach. The primary contribu-
tions of the suggested approach are outlined below: L.
Removing the stage involving the detection of regions
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of interest by introducing an image-pyramid approach
to produce many low-resolution feature maps around
the goal points, II. Size-dependent logarithmic scaling
of the input data that makes the approach applicable to
high-resolution images. III. Employing a ResNet archi-
tecture to precisely regress landmark locations in each
scale. IV. Using an error-feedback approach to modify
patches in each scale and each estimated landmark. V.
Diversifying the training data set to include cases with/
without primary treatments. VI. Evaluating the accu-
racy of landmark detection on X-ray images of the lower
limb VII. Simultaneous calculation of MFMTA, MLDFA,
MPTA, and JLCA angles VIII. Automatic classification
of those angles as lower than normal, normal or higher
than normal according to predefined ranges for a normal
condition. IX. presenting a publically available landmark-
labeled full-leg X-ray dataset to support future works in
the field.

Materials and methods

Full-leg X-rays dataset

We use our publicly available lower limb dataset to evalu-
ate the performance of the proposed approach.

The dataset is including high resolution DICOM for-
mat for bilateral weight-bearing X- rays. All patients
underwent imaging based on clinical indications of
lower-limb malalignment. None of the data used in this
study has a torsional deformation component and they
underwent capturing for lower limb deformity in coro-
nal plane, therefore in this model all the data was used to
detect 2D landmarks. The data set contains various lower
limb deformities; specifically, which related to varus val-
gus deformity with different origin along femur, tibia, and
joint line. The data covers three categories of lower than
normal, normal, and higher than normal for all 2D angu-
lar indicators (MFMTA, MLDFA, MPTA, LDTA, and
JLCA). The dataset (named Rad lower limb Xray dataset),
provided by a local imaging center, was generated using a
radiography imaging device. All the cases have pixel size
information in DICOM format metadata. All cases pre-
sent a complete field of view (including pelvis, both hip
joints, both knee joints, and both ankles). For this data-
set, 426 subjects underwent the capturing. The partici-
pants included people with an osteotomy (54 subjects),
total hip arthroplasty (2 subjects), total knee arthroplasty
(73 subjects), miscellanies (6 subjects), and people with
no primary treatment (291 subjects). The resolution of
the images varies from 2548 to 3342 X 6995 to 10023 pix-
els according to the different settings in the imaging step.
The imaging accuracy for each pixel is about 0.1 mm. In
the annotation step, each x-ray is first labeled according
to its primary treatment and then labeled with 26 land-
marks (13 landmarks for each leg). The labeled landmarks
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in the Rad dataset are shown in Fig. 2. Our full-leg Xray
dataset as well as the landmarks’ annotations will be
made publicly available with this publication to support
upcoming works in the field (https://aailab.ir/datasets/
xray_rad_lower_limb.html). The work was approved by
the Research Ethics Committees of Tehran University—
Faculty of Sport Sciences and Health, University of Tehra,
Tehran, Iran (Approval ID: IR.UT.SPORT.REC.1402.131).

Method

We first build a Gaussian pyramid with seven levels to
produce smooth multi resolution pyramid (Fig. 3). Each
pyramid level is a 64 X 64 matrix around the initial esti-
mation for landmark coordinates referring to a specific
image downsample [15, 16]. To retain images’ scale and
have a uniform dataset, we add black pixels around each
x-ray to have the dataset with an image size of 10112
% 3584. The number of pyramid levels is set so that the
size of the last down-sampled image (with two as a ratio
size) would be approximately equal to the size of our
desired patch (64 x 64). Therefore, levels of pyramids are
referred to resolutions of 4096 X 4096 to 64 X 64 (in seven
steps). For the training phase, the initial location of the
landmark is initialized randomly from a normal land-
mark distribution for the training data. For the evaluation
phase, however, it is initialized to the mean of the train-
ing labels for the landmark.

After building a 7-level pyramid, each level of the
pyramid is processed by the pre-trained CNN, which is
well suited for accurate regression of landmark coordi-
nates in medical images [17]. For this purpose, 34-layer
ResNet with some modifications is employed [18]. The
structure of the modified ResNet is shown in Fig. 4. Each
patch with the size of 64 X 64 is processed with CNN
independently using the weights from the green channel.
This allows for effective processing of the grayscale data
while benefiting from the pre-trained weights, leading to
faster convergence during training. The green channel
was selected because it typically contains more informa-
tive features compared to the red or blue channels in
many natural images. The stride of the first convolution
was reduced from 2 to 1. A stride of 2 would halve the
dimensions of the feature map, resulting in a considera-
ble loss of spatial information. For landmark localization,
maintaining higher spatial resolution is crucial to predict
precise locations. Finally, the last 7 layers (including the
fully-connected layer) of ResNet are removed. By trun-
cating the network, its depth was effectively decreased,
minimizing the downsampling applied to the feature
maps throughout the architecture. This is especially
important in landmark localization tasks, where fine spa-
tial details are crucial. In this way, the output size of each
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E F
Fig. 2 Four types of cases in the dataset are presented: patients with A total knee arthroplasty, B osteotomy, C total hip arthroplasty, D miscellanies,
and E no primary treatments. Parts F and G placement of landmarks for the right leg and landmark characteristics are shown, respectively

modified ResNet would be 256 X 8 X 8. The output can be
thought of as 256 low-resolution 8 x 8 heatmaps.
Heatmap regression has been utilized in several recent
works for human pose estimation and 2D landmark
detection [16, 20-22]. Given a learned heat map repre-
sents the probability of the location being the goal point,
many works considered the location of the point with the
maximum likelihood as the final point. Since this method
is not end-to-end differentiable and suffers from quan-
tization error, the integral regression approach was rec-
ommended [20]. To do this, each heatmap is processed
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No. Landmark

01 Femoral Head Contour Top
02 Femoral Head Contour Medial
03 Femoral Head Contour Lateral
04 Femoral Head Centre

05 Femoral Trochlear Notch

06 Femoral Lateral Condyle

07 Femoral Medial Condyle

08 Tibial Lateral Condyle

09 Tibial Medial Condyle

10 Tibial Eminence

11 Tibial Distal Mid-Point

12 Tibial Distal Medial Point

13 Tibial Distal Lateral Point

G

by Softmax to obtain probability distributions, and then
each heatmap is reduced to a single point using Integral
Regression. The third feature for each heatmap is pro-
duced using Softmax-weighted average pooling with an
8x 8 kernel size to consider the relative importance of
each point feature to others [16]. Now output with the
size of 256 % 3, which represents heatmap features, flat-
ten for 7 levels of the pyramid and concatenate them to
create a 1D vector as an input for the following network.
A 3-layer fully connected neural network is employed
to regress the estimated offset for landmark location. 1D
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Fig. 3 Visual presentation of the proposed approach. The Gaussian pyramid, including different image resolutions is used to create 64 x 64
matrices around the estimated landmark. Then each patch is fed into a modified CNN to regress landmark location. The neural network is employed
on features extracted from CNN's output for all pyramid levels to detect offset. This offset is used to update estimation for a landmark location
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Fig. 4 Diagram of the modified ResNet architecture. In first layer the stride is changed to 1. The last 7 layers including dense layer are removed. [19]

features vector from heatmaps with the length of 5376
(256 x3 x7) is the network’s input, and the output is
the 1D vector with the length of 2 to use as model feed-
back error. 2 hidden layers of the network have 512 and
128 neurons with Relu activation function. This estima-
tion for landmark offset is employed to modify landmark
location. Based on this new estimation for a landmark,
the pyramid’s layers are recreated. This loop is repeated
for a pre-defined number of iterations (e.g., 10); and in
each iteration, the estimated landmark gets closer to the
target (Pseudo code 1).

Training

For 30 epochs, we trained the network using the
ADAM optimizer with learning rates of le-4 for the
first 20 epochs and le-5 for the other 10. A batch size
of 2 photos was employed. 85% of samples are utilized
for training and 15% are used for validation. The pro-
cedure has only been trained for the right leg. The data
is flipped from left to right for the left leg to double the
number of training data and further reduce the vari-
ation in the data. As input for the network, all X-Ray
images are resized to 5056 % 10,112 pixels by adding

black pixels around each image. Data augmentation
improves prediction performance and handles wider
variability within the provided image data. A patch was
scaled by +5% and randomly rotated by +15°% during
training.

Pseudo code 1:Training step for a single landmark on single x-ray image

Require: X-ray image (I), mean (u) and standard deviation (o) for land-
mark position on training data

Initial landmark estimation: xg ~ N (u.o')

Initialize Gaussian pyramid with n level

Fori=1,10do

Forj=1,ndo

Create 64 x 64 pixel patch around xq for pyramid level j
Employ CNN on patch to get C= 256x H= 8x W =8 output

Feature extraction from H x W output to create C x 3 vector
Flat Cx 3 vector and concatenate into P

End for

MLP with P vector as an input and location offset (X) as an output
Update landmark estimation xg < xo + X

Backpropagate |xo — X|

End for
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Results

Thirteen independent networks were developed, one per
landmark. The performance of our suggested approach
was evaluated at several levels: landmark coordinates
accuracy in millimeters, angles accuracy in degrees, and
class assignment accuracy. The results were reported for
both primary cases (cases with no initial treatment), and
all cases (including primary and revision cases).

Landmark coordinates accuracy

The estimated values achieved using our proposed
approach were produced separately, and their distances
from the 2D coordinates of landmarks achieved by
human experts were calculated. The details of the results
are presented in Table 1. The detection efficiency within
the 3 mm error range was reported for each landmark.
The median and maximum errors were reported to bet-
ter comprehend the error magnitude for the unsuccessful
cases. The accuracy was measured for successful detec-
tions using the mean, median, and standard deviation
for both primary and all cases (including revision cases).
The femoral trochlear notch point displayed the highest
level of accuracy, with a mean L1 error of 0.33 +0.24 mm,
and the tibial lateral condyle showed the lowest level of
accuracy (1.18 £0.63 mm) for primary cases. The discov-
ered landmarks had an overall mean inaccuracy of 0.79
+0.57 mm and 0.82 +0.60 mm for primary and all cases,
respectively.
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To determine the center of the femoral head, two sce-
narios are probable according to expert preference. The
landmark can be determined directly within one point in
the center of the head or calculated from the fitted circle
using 3 points on the femoral head counter (femoral head
contour top, femoral head contour medial, and femoral
head contour lateral). The estimated values for the center
of the femoral head are achieved using direct and indi-
rect methods. The details of the results are presented in
Table 2. The distance error between calculated landmarks
using 3 points on the femoral counter for both target and
detection, displayed the highest level of accuracy, with a
mean error of 0.51 £0.36 mm and 0.61 +0.50 mm for pri-
mary and all cases, respectively.

To better understand error distribution for each land-
mark and compare model performance between each
landmark, the boxplot on all test data and histogram on
test data excluding failed cases are reported, respectively
(Fig. 5A and B).

Angle accuracy

For a better model assessment, final angles’ values
(MFMTA, MLDFA, MPTA, LDTA, and JLCA) were
acquired using our approach estimation for landmarks
and compared with angles values using landmarks eval-
uated by human experts. Table 3 displays the results
in detail. The detection performance within the error
range of 2° was 95.6% for all angles. For the failed cases,
the median and maximum errors were presented. The

Table 1 Results from various anatomical landmarks on the femur and tibia. The failed cases’ columns display the proportion of
unsuccessful cases, the median, and the maximum absolute error for this group. The success rates define the accuracy (excluding
failed ones) for primary and all cases. The final row displays the results averaged over all landmarks. The absolute error (L1) is expressed

in millimeters
Failed cases (error more than 3mm) Accuracy (excl. failed cases) Accuracy (excl. failed
for primary cases cases) for all cases
Bone type Landmark % Failure Median Max Mean =SD Median Mean £SD Median
Femur Femoral Head Contour Top 0% - - 0.62 +0.34 0.57 0.65 +041 0.56
Femoral Head Contour Medial 4% 4.59 5.65 1.04 £0.65 0.90 1.03 £0.64 0.84
Femoral Head Contour Lateral 8% 3.64 4.58 1.04 £0.57 0.96 1.18£0.64 1.10
Femoral Head Center 0% - 0.89 £041 093 0.96 £045 1.00
Femoral Trochlear Notch 0% - - 033+024 0.29 0.33+0.25 0.30
Femoral Lateral Condyle 10% 4.38 441 0.77 £0.63 0.52 0.91+0.72 0.72
Femoral Medial Condyle 4% 327 339 0.96 £0.82 0.59 0.98 £0.81 063
Tibia Tibial Lateral Condyle 4% 3.10 3.17 1.18 £0.63 1.03 115+£0.73 1.03
Tibial Medial Condyle 2% 324 324 1.03 £0.65 095 1.04 +£0.76 095
Tibial Eminence 0% - - 0.70 £043 0.60 0.66 +£0.40 0.52
Tibial Distal Mid-Point 0% - - 0.58 £0.50 042 0.59+047 0.82
Tibial Distal Medial Point 0% - - 049 +0.27 045 048 £0.27 046
Tibial Distal Lateral Point 2% 323 3.23 0.68 £0.45 0.67 0.70 £0.43 0.64
Average all 2.6% 339 458 0.79+£057 0.68 0.82+£0.60 0.67
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Table 2 Results from various methods to detect the center of the femoral head. The failed cases'columns display the proportion of
unsuccessful cases, the median, and the maximum absolute error for this group. The success rates define the accuracy (excluding
failed ones) for primary and all cases. The absolute error (L1) is expressed in millimeters

Error type Failed Cases (error more than 3mm)  Accuracy (excl. failed cases) Accuracy (excl. failed
for primary cases cases) for all cases
% Failure Median Max Mean +SD Median Mean +SD Median
Direct femoral head center vs its estimation 0% - - 0.89+£041 0.93 0.96 +0.45 1.00
Direct femoral head center vs calculated center 0% - - 1.12+0.63 1.03 1.19+0.62 1.1
using three estimated points
Calculated center using 3 points vs calculated 2% 449 449 0.51+036 041 0.61+0.50 046
center using estimated 3 points
Landmark mean L1 error Landmark mean L1 error
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Fig. 5 Boxplot to describe A landmarks'L1 error and C) angles'L1 error on all test data, and histogram to present B landmarks'mean L1 error and D

angles’mean L1 error for all test data excluding failed cases

accuracy of successful detections was assessed using
the mean, median, and standard deviation. With a
mean error of 0.19 +£0.17°, the MFMTA displayed the
highest accuracy level, while the LDTA displayed the
lowest accuracy level (0.91 +0.51°). The discovered
angles had an overall mean inaccuracy of 0.45 +0.42°

and 0.43 +0.39° for primary and all cases, respectively.
Error distribution for each calculated angle on all test
data is shown using boxplots (Fig. 5C). The mean error
value of the model for each angle on test data exclud-
ing failed cases is also presented using a histogram
(Fig. 5D).
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Table 3 Results from the MFMTA, MLDFA, MPTA, LDTA, and JLCA angles for both legs using discovered landmarks. The unsuccessful
cases are identified using the absolute error (L1 loss) between our estimates and the expert measures. Within this category, the first
four columns display the proportion of failed cases, absolute angle error, maximum error, and classification error (between normal,
greater than normal, and lower than normal). The success rates define the accuracy (excluding failed ones) for primary and all cases.
The final row displays the results averaged over all angles. The error is expressed in degrees

Angle type Failed cases (error more than 2°) Accuracy (excl. failed cases) for primary Accuracy (excl. failed cases) for all cases
cases
% Failure median Max angle error [Degree] Classification angle error [Degree] Classification
[Degree] error (accuracy) error
(accuracy)
MLDFA 2% 429 4.29 032+022 100% 0324022 100%
MPTA 4% 3.27 4.20 042 +£0.38 100% 0.39+0.33 100%
LDTA 8% 252 6.26 091 +£0.51 80% 0.85+049 82%
MFMTA 0% - - 019+£0.17 97% 0.20+0.16 98%
JLCA 8% 281 457 044 +£0.39 86% 042 +£037 89%
Average 4.4% 3.08 6.26 045 £042 94% 043 +£0.39 94.1%

Classification agreement

To assess the ultimate effect of landmark error on
orthopedic diagnosis, the authors employed a classifi-
cation method. The clinical classifications for angles are
divided into three categories: normal, lower than nor-
mal, and higher than normal. According to Paley, the
normal range for each indicator is specified through
the average range of many healthy adults’ indicators
(described in section 1). In this study, each angular
indicator was calculated using the estimated landmark
positions for all cases. Subsequently, each indica-
tor was assigned to one of the categories based on its
magnitude relative to Paley’s established thresholds.
For ground truth validation, we computed the angu-
lar indicators using manually identified landmarks and
categorized them according to the same thresholds. A
classification was considered correct if the estimated
category matched the ground truth category; otherwise,
it was considered a misclassification (binary threshold).
Selecting classification thresholds is crucial for opti-
mizing diagnostic performance. If set too leniently,
unhealthy conditions could be misclassified as nor-
mal (false negatives), while thresholds set too strictly
could misidentify normal variations as abnormal (false
positives). To assess classification efficiency, we defined
accuracy as the ratio of the number of correctly classi-
fied cases to the total number of cases. The classifica-
tion accuracy between the three classes for both failed,
and successful cases are determined (Table 3). For all
cases, the accuracy of angle class assignment between
our model and expert measurements is about 94%.
MPTA and MLDFA have the highest accuracy (100%)
for both primary and all cases; LDTA has the lowest

accuracy of 80% and 82% for primary and all cases,
respectively.

The accuracy levels of the test group participants were
also assessed. While the patient (considering both legs)
with the lowest accuracy (Fig. 6A) had a prediction error
of 1.16 +0.70 mm, the person with the highest accuracy
level (Fig. 6B) had a prediction error of 0.61 +0.43 mm.
The figure provides the referred and estimated landmarks
for these two instances to illustrate this prediction error
level. Considering each case referring to one leg, the low-
est and highest accuracy cases had a prediction error of
1.38 £0.69 mm and 0.55 +0.28 mm for landmark detec-
tion. For the angle detection, the case with the lowest and
highest accuracy had a prediction error of 1.98 +1.35°
and 0.12 +0.43°, respectively.

The overall outcome of our model on full-leg input
x-ray is shown in Fig. 7. Red spots indicate the estimated
landmarks. The Red line indicates the locations of the
LFDA, MPTA, LDTA, MEMTA, LMA, and JACL angles.
Their values for both legs are also presented in white.

Discussion

A novel, pyramid-based approach is proposed to deter-
mine the type and severity of human lower limb deformi-
ties for osteotomy surgery. The approach employs a deep
neural network of the CNN architecture to determine
such characterizing angles as MEMTA, MLDFA, MPTA,
LDTA, and JLCA using a set of landmarks that are auto-
matically detected by the CNN. Each calculated angle
is then categorized as normal, greater than normal, or
smaller than normal based on the MD-predefined nor-
mal range for each angle.
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Fig. 6 The best and worst landmark predictions for the test group. A had the most accurate estimate (0.61 +0.43 mm), while B had the worst (1.16
+0.70 mm in prediction error). The experts produced the red points, while our model produced the blue ones

Fig. 7 A representation of the overall result. Red spots are estimated
landmarks, and white lines are goal angles for both legs based
on estimated landmarks

Using feedback mechanisms in multiscale feature
extraction in high-resolution images are crucial for sev-
eral reasons: I. Feedback mechanisms allow the model

to refine its feature extraction process based on initial
outputs. This iterative refinement helps in capturing
fine details in high-resolution images, leading to more
precise landmark detection. II. High-resolution images
often contain objects or landmarks at various scales. A
feedback mechanism can help integrate features from
multiple scales effectively, ensuring that both local and
global landmarks are accurately detected. III. Feedback
from higher-level features can extract lower-level fea-
tures, helping the model understand the context in which
landmarks appear. This is particularly useful in high-res-
olution images where both global and local features can
influence the perception of a landmark. IV. High-reso-
lution images may have noise or unwanted distortions.
Feedback mechanisms identify and reduce the impact
of these issues, leading to more reliable landmark detec-
tion. V. As new images are processed, feedback allows the
model to adjust its strategies based on what it learns from
the data. This means it can handle variations like changes
in contrast, lighting or obstructions.

The most recent efforts use first- and second-order
detection to find regions of interest at joints and land-
mark coordinates, respectively [7, 8, 13]. In compari-
son, our approach gets around high-resolution datasets
by constructing multiresolution Gaussian pyramids to
learn features in many scales in a single-step detection.
This eliminates the need to extract each region of inter-
est independently. Tack et al. used pre-trained CNN
(ResNet) to identify the regions of joints. However, some
failed cases were reported based on the different contrast
of images. Additionally, certain outliers were displayed in
landmark regression because of significant bone deformi-
ties and low image contrast. Even so, the total HKA
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measurement and landmark detection error are accepta-
ble for patients without primary treatment [7]. While Pei
et al. used U-net to benefit from segmentation, Nguyen
et al. used CNN to determine the location of the joints.
However, Pei et al. reported a 0.5° average error between
the automatic results and the manual measurements for
the patient without primary treatments for the HKA
angle. Nguyen et al. also reported 0.59°,1.01°, and 1.08°
average error for HKA, MLDFA, and MPTA, respec-
tively [8, 13]. Our approach identifies the entire range of
angles used in lower limb evaluations to precisely assess
deformities. The approach easily deals with high-resolu-
tion images, cases with primary treatment like total hip
arthroplasty, and more promising results are reported
(Table 4).

For our high-resolution lower-limb dataset, the success
of our approach is encouraging. Three levels of perfor-
mance are shown for the suggested approach: I. deter-
mining the error between the landmarks’coordinates,
which are automatically provided by the proposed
approach, and the manually measured values used as
standard references for the test images. II. the difference
between the defined angles using manually measured
values and automatically estimated landmarks. III. clas-
sification error for angles range between our estimated
classification and standard references.

Some failed cases were identified due to high errors
in landmark positioning and indicator evaluation. Those
cases primarily relate to points that are inherently chal-
lenging to specify manually. To address this issue, an
effective method is to define difficult landmarks in rela-
tion to others (the authors employed the same idea for
the central point of the femoral head). Increasing the
amount of training data is another potential solution.
Utilizing more technicians for data labeling can also help
reduce human error for manual labeling. The other pri-
mary reason for high errors, particularly in the joints, is
the shadowing effect in imaging. A better imaging device
with higher contrast that clearly defines the joint lines
would help resolve this issue.

Table 4 Comparison with other methods: Average absolute
error +standard deviation (average results over all test data) is
reported for angular indicators. “Top corresponds to the right and
bottom to the left leg measurements

Method JLCA[] MLDFA[?] MPTA[°] HKA [°]
Neguyen et al?[8] - 090+080 1.15+094 067+042
1.144£089 1034067 0544049
Joetal. [23] 0.72+064 052+047 046+045 0.22=+0.17
Sanchezetal. [24] - 073+069 1.09+1.02 034+043

Ours 0.44+0.39 0.32+0.22 0.42+0.38 0.19+0.17
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3D abnormalities, such as rotational deformities, can-
not obviously be detected through 2D X-ray imaging.
Furthermore, in cases with rotational deformities, the
coronal plane, which is employed to define all 2D land-
marks and indicators, becomes misaligned. None of the
data used in this study has a torsional deformation com-
ponent, therefore in this model all the data was used
to detect 2D landmarks. For general application of the
model, the user needs to remove cases with a torsional
deformation component. For these cases 3D imaging
is recommended to get a better understanding of the
patient’s anatomy and deformities.

Conclusion
In this study, the pyramid-based approach proved quite
effective results for automatic 2D lower-limb annotation
for high-resolution x-ray images. The proposed approach
involves constructing a pyramid using an adaptively sized
2D Gaussian patch over each scale and feeding those
patches to a modified ResNet architecture to extract fea-
tures at each individual resolution and finally estimating
the coordinates of target landmarks using an integrating
neural network. Results from multiple simulated experi-
ments showed that the proposed approach can provide
the required precision for direct clinical applications.
Additionally, our system didn’t need additional segmen-
tation or region of interest detection processes. We antic-
ipate that the benefits of our approach will make planning
for osteotomies and lower-limb analysis more expedient.
The work reported here can be extended to utilize 3D
data to evaluate 3D angular indicators like femoral and
tibial rotations that do not appear in 2D images [25]. We
envision analyzing the 3D data by estimating the land-
mark position using a multi-view technique. A pyra-
mid-based network is utilized to estimate the landmark
position for each view, followed by a 3-layer neural net-
work that serves as a fusion strategy to determine the 3D
locations of the landmarks [22]. This constitutes part of
an ongoing research by the authors.

Abbreviations
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MFMTA  Mechanical Femoral Mechanical Tibial Angle
MLDFA  Mechanical Lateral Distal Femoral Angle
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