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Abstract 

Background  Planning an osteotomy or arthroplasty surgery on a lower limb requires prior classification/iden-
tification of its deformities. The detection of skeletal landmarks and the calculation of angles required to identify 
the deformities are traditionally done manually, with measurement accuracy relying considerably on the experience 
of the individual doing the measurements. We propose a novel, image pyramid-based approach to skeletal landmark 
detection.

Methods  The proposed approach uses a Convolutional Neural Network (CNN) that receives the raw X-ray image 
as input and produces the coordinates of the landmarks. The landmark estimations are modified iteratively 
via the error feedback method to come closer to the target. Our clinically produced full-leg X-Rays dataset is made 
publically available and used to train and test the network. Angular quantities are calculated based on detected land-
marks. Angles are then classified as lower than normal, normal or higher than normal according to predefined ranges 
for a normal condition.

Results  The performance of our approach is evaluated at several levels: landmark coordinates accuracy, angles’ 
measurement accuracy, and classification accuracy. The average absolute error (difference between automatically 
and manually determined coordinates) for landmarks was 0.79 ± 0.57 mm on test data, and the average absolute error 
(difference between automatically and manually calculated angles) for angles was 0.45 ± 0.42°.

Conclusions  Results from multiple case studies involving high-resolution images show that the proposed approach 
outperforms previous deep learning-based approaches in terms of accuracy and computational cost. It also enables 
the automatic detection of the lower limb misalignments in full-leg x-ray images.

Keywords  Skeletal landmark detection, Lower limb deformities, Osteotomy, Arthroplasty surgery, Convolutional 
neural networks

Background
A lower limb deformity is commonly defined as the 
deviation of the limb’s physiological axis from its normal 
condition. Those deformities may be congenital or con-
stitutional in origin. Children may experience them due 
to a growth condition that causes the epiphyseal plate to 
close too soon. They could also be linked to traumatic 
events, metabolic disorders like rickets or such osteopa-
thies as renal osteopathy. Neurologic diseases or systemic 
myopathies may also be connected [1].
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The alignment of the lower limbs is assessed using a 
full-length standing anteroposterior (AP) projection 
radiograph [1]. Quantities of importance, such as the 
anatomical and mechanical axes of the femur and tibia, 
the femoral condyle tangent, and the tibia plateau tan-
gent, are used to determine parameters related to the 
lower limb alignment. Following the stated quantities of 
interest, the typical parameters describing the lower limb 
alignment are calculated from lower limb frontal X-ray 
images (Fig. 1) [2–5]:

•	 Mechanical femoral mechanical tibial angle 
(MFMTA) is the angle between the mechanical axes 
of the femur and tibia with a normal range of (−2°,4°).

•	 Mechanical lateral distal femoral angle (MLDFA) is 
the angle between the femoral condyle tangent and 
the mechanical axis of the femur with a normal range 
of (85°,90°).

•	 Mechanical proximal tibial angle (MPTA) is the angle 
between the tangent to the tibial plateau and the 
anatomical axis of the tibia with a normal range of 
(85°,90°).

•	 Lateral distal tibial angle (LDTA) is the angle between 
the distal tibial articular surface and the anatomical 
axis of the tibia, which measures lateral distal tibial 
angle with a normal range of (86°,92°).

•	 Joint line convergence angle (JLCA) is the angle 
formed between a line tangential to the distal femoral 
condyle and the tibial plateau with a normal range of 
(0°,2°) [1, 6]

Orthopedic surgeons typically review radiography in 
AP projection with the individual standing up straight to 
support body weight to detect lower limb abnormalities 
in patients. However, modern technological advance-
ments allow the employment of semi-automated and 
automatic procedures where accuracy and productiv-
ity are independent of the human experience [1, 7–11]. 
Recent works with a deep learning approach utilize two 
independent networks for a region of interest extraction 
and landmark detection, respectively [12]. Nguyen et al. 
suggested a decentralized deep learning system for com-
puting the angles of angle between the femoral mechani-
cal and anatomical axes (FAMA), hip-knee-ankle (HKA), 
MLDFA, and MPTA angle computation from full-leg 
radiographs. First, regions of interest around each joint 
are detected using a convolutional neural network 
(CNN). Then, by employing a second CNN, landmark 
coordinates are computed [8]. Pei et  al. presented a 
U-net-based method to evaluate the HKA angle on uni-
lateral lower limb X-rays. The different joints like hip, 
knee, and ankle were segmented using a U-net. The seg-
mentations are utilized to identify the joints’ centers. 
These points were used to estimate the HKA angle [13] A 
method for determining HKA angles from full-leg radio-
graphs was put out by Tack et al. The YOLOv4 was used 
in their method to identify regions of interest in joints. 
After that, each detected region of interest was regressed 
using ResNet to find landmark coordinates. Then, HKA 
angle was calculated using the identified landmarks [7].

Based on expert human landmarking patterns, we pro-
vide an image pyramid-based approach for landmark 
regression and angle measurement to assess lower limb 
deformities. This approach is inspired by the reinforce-
ment learning strategy used for supervised learning 
tasks [14]. On our publicly accessible data from a local 
imaging center, we compare our estimates for landmark 
coordinates with those of human specialists to assess 
the accuracy of our approach. The primary contribu-
tions of the suggested approach are outlined below: I. 
Removing the stage involving the detection of regions 

Fig. 1  Typical measurements describing the lower limb, obtained 
from a frontal X-ray image: MFMTA, MLDFA, MPTA, LDTA, and JLCA
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of interest by introducing an image-pyramid approach 
to produce many low-resolution feature maps around 
the goal points, II. Size-dependent logarithmic scaling 
of the input data that makes the approach applicable to 
high-resolution images. III. Employing a ResNet archi-
tecture to precisely regress landmark locations in each 
scale. IV. Using an error-feedback approach to modify 
patches in each scale and each estimated landmark. V. 
Diversifying the training data set to include cases with/
without primary treatments. VI. Evaluating the accu-
racy of landmark detection on X-ray images of the lower 
limb VII. Simultaneous calculation of MFMTA, MLDFA, 
MPTA, and JLCA angles VIII. Automatic classification 
of those angles as lower than normal, normal or higher 
than normal according to predefined ranges for a normal 
condition. IX. presenting a publically available landmark-
labeled full-leg X-ray dataset to support future works in 
the field.

Materials and methods
Full‑leg X‑rays dataset
We use our publicly available lower limb dataset to evalu-
ate the performance of the proposed approach.

The dataset is including high resolution DICOM for-
mat for bilateral weight-bearing X- rays. All patients 
underwent imaging based on clinical indications of 
lower-limb malalignment. None of the data used in this 
study has a torsional deformation component and they 
underwent capturing for lower limb deformity in coro-
nal plane, therefore in this model all the data was used to 
detect 2D landmarks. The data set contains various lower 
limb deformities; specifically, which related to varus val-
gus deformity with different origin along femur, tibia, and 
joint line. The data covers three categories of lower than 
normal, normal, and higher than normal for all 2D angu-
lar indicators (MFMTA, MLDFA, MPTA, LDTA, and 
JLCA). The dataset (named Rad lower limb Xray dataset), 
provided by a local imaging center, was generated using a 
radiography imaging device. All the cases have pixel size 
information in DICOM format metadata. All cases pre-
sent a complete field of view (including pelvis, both hip 
joints, both knee joints, and both ankles). For this data-
set, 426 subjects underwent the capturing. The partici-
pants included people with an osteotomy (54 subjects), 
total hip arthroplasty (2 subjects), total knee arthroplasty 
(73 subjects), miscellanies (6 subjects), and people with 
no primary treatment (291 subjects). The resolution of 
the images varies from 2548 to 3342 × 6995 to 10023 pix-
els according to the different settings in the imaging step. 
The imaging accuracy for each pixel is about 0.1 mm. In 
the annotation step, each x-ray is first labeled according 
to its primary treatment and then labeled with 26 land-
marks (13 landmarks for each leg). The labeled landmarks 

in the Rad dataset are shown in Fig. 2. Our full-leg Xray 
dataset as well as the landmarks’ annotations will be 
made publicly available with this publication to support 
upcoming works in the field (https://​aailab.​ir/​datas​ets/​
xray_​rad_​lower_​limb.​html). The work was approved by 
the Research Ethics Committees of Tehran University—
Faculty of Sport Sciences and Health, University of Tehra, 
Tehran, Iran (Approval ID: IR.UT.SPORT.REC.1402.131).

Method
We first build a Gaussian pyramid with seven levels to 
produce smooth multi resolution pyramid (Fig. 3). Each 
pyramid level is a 64 × 64 matrix around the initial esti-
mation for landmark coordinates referring to a specific 
image downsample [15, 16]. To retain images’ scale and 
have a uniform dataset, we add black pixels around each 
x-ray to have the dataset with an image size of 10112 
× 3584. The number of pyramid levels is set so that the 
size of the last down-sampled image (with two as a ratio 
size) would be approximately equal to the size of our 
desired patch (64 × 64). Therefore, levels of pyramids are 
referred to resolutions of 4096 × 4096 to 64 × 64 (in seven 
steps). For the training phase, the initial location of the 
landmark is initialized randomly from a normal land-
mark distribution for the training data. For the evaluation 
phase, however, it is initialized to the mean of the train-
ing labels for the landmark.

After building a 7-level pyramid, each level of the 
pyramid is processed by the pre-trained CNN, which is 
well suited for accurate regression of landmark coordi-
nates in medical images [17]. For this purpose, 34-layer 
ResNet with some modifications is employed [18]. The 
structure of the modified ResNet is shown in Fig. 4. Each 
patch with the size of 64 × 64 is processed with CNN 
independently using the weights from the green channel. 
This allows for effective processing of the grayscale data 
while benefiting from the pre-trained weights, leading to 
faster convergence during training. The green channel 
was selected because it typically contains more informa-
tive features compared to the red or blue channels in 
many natural images. The stride of the first convolution 
was reduced from 2 to 1. A stride of 2 would halve the 
dimensions of the feature map, resulting in a considera-
ble loss of spatial information. For landmark localization, 
maintaining higher spatial resolution is crucial to predict 
precise locations. Finally, the last 7 layers (including the 
fully-connected layer) of ResNet are removed. By trun-
cating the network, its depth was effectively decreased, 
minimizing the downsampling applied to the feature 
maps throughout the architecture. This is especially 
important in landmark localization tasks, where fine spa-
tial details are crucial. In this way, the output size of each 

https://aailab.ir/datasets/xray_rad_lower_limb.html
https://aailab.ir/datasets/xray_rad_lower_limb.html
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modified ResNet would be 256 × 8 × 8. The output can be 
thought of as 256 low-resolution 8 × 8 heatmaps.

Heatmap regression has been utilized in several recent 
works for human pose estimation and 2D landmark 
detection [16, 20–22]. Given a learned heat map repre-
sents the probability of the location being the goal point, 
many works considered the location of the point with the 
maximum likelihood as the final point. Since this method 
is not end-to-end differentiable and suffers from quan-
tization error, the integral regression approach was rec-
ommended [20]. To do this, each heatmap is processed 

by Softmax to obtain probability distributions, and then 
each heatmap is reduced to a single point using Integral 
Regression. The third feature for each heatmap is pro-
duced using Softmax-weighted average pooling with an 
8 × 8 kernel size to consider the relative importance of 
each point feature to others [16]. Now output with the 
size of 256 × 3, which represents heatmap features, flat-
ten for 7 levels of the pyramid and concatenate them to 
create a 1D vector as an input for the following network.

A 3-layer fully connected neural network is employed 
to regress the estimated offset for landmark location. 1D 

Fig. 2  Four types of cases in the dataset are presented: patients with A total knee arthroplasty, B osteotomy, C total hip arthroplasty, D miscellanies, 
and E no primary treatments. Parts F and G placement of landmarks for the right leg and landmark characteristics are shown, respectively
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features vector from heatmaps with the length of 5376 
(256 × 3 × 7) is the network’s input, and the output is 
the 1D vector with the length of 2 to use as model feed-
back error. 2 hidden layers of the network have 512 and 
128 neurons with Relu activation function. This estima-
tion for landmark offset is employed to modify landmark 
location. Based on this new estimation for a landmark, 
the pyramid’s layers are recreated. This loop is repeated 
for a pre-defined number of iterations (e.g., 10); and in 
each iteration, the estimated landmark gets closer to the 
target (Pseudo code 1).

Training
For 30 epochs, we trained the network using the 
ADAM optimizer with learning rates of 1e-4 for the 
first 20 epochs and 1e-5 for the other 10. A batch size 
of 2 photos was employed. 85% of samples are utilized 
for training and 15% are used for validation. The pro-
cedure has only been trained for the right leg. The data 
is flipped from left to right for the left leg to double the 
number of training data and further reduce the vari-
ation in the data. As input for the network, all X-Ray 
images are resized to 5056 × 10,112 pixels by adding 

black pixels around each image. Data augmentation 
improves prediction performance and handles wider 
variability within the provided image data. A patch was 
scaled by ± 5% and randomly rotated by ± 15°% during 
training.

Pseudo code 1: Training step for a single landmark on single x-ray image

Require: X-ray image (I), mean (µ) and standard deviation ( σ ) for land-
mark position on training data

Initial landmark estimation: x0 ∼ N (µ.σ)

Initialize Gaussian pyramid with n level

For i = 1, 10 do
For j = 1, n do
Create 64 × 64 pixel patch around x0 for pyramid level j

Employ CNN on patch to get C = 256× H = 8× W = 8 output

Feature extraction from H × W output to create C × 3 vector
Flat C × 3 vector and concatenate into P

End for

MLP with P vector as an input and location offset ( x  ) as an output

Update landmark estimation x0 ← x0 + x̂

Backpropagate 
∣∣x0 − x̂

∣∣

End for

Fig. 3  Visual presentation of the proposed approach. The Gaussian pyramid, including different image resolutions is used to create 64 × 64 
matrices around the estimated landmark. Then each patch is fed into a modified CNN to regress landmark location. The neural network is employed 
on features extracted from CNN’s output for all pyramid levels to detect offset. This offset is used to update estimation for a landmark location

Fig. 4  Diagram of the modified ResNet architecture. In first layer the stride is changed to 1. The last 7 layers including dense layer are removed. [19]
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Results
Thirteen independent networks were developed, one per 
landmark. The performance of our suggested approach 
was evaluated at several levels: landmark coordinates 
accuracy in millimeters, angles accuracy in degrees, and 
class assignment accuracy. The results were reported for 
both primary cases (cases with no initial treatment), and 
all cases (including primary and revision cases).

Landmark coordinates accuracy
The estimated values achieved using our proposed 
approach were produced separately, and their distances 
from the 2D coordinates of landmarks achieved by 
human experts were calculated. The details of the results 
are presented in Table 1. The detection efficiency within 
the 3 mm error range was reported for each landmark. 
The median and maximum errors were reported to bet-
ter comprehend the error magnitude for the unsuccessful 
cases. The accuracy was measured for successful detec-
tions using the mean, median, and standard deviation 
for both primary and all cases (including revision cases). 
The femoral trochlear notch point displayed the highest 
level of accuracy, with a mean L1 error of 0.33 ± 0.24 mm, 
and the tibial lateral condyle showed the lowest level of 
accuracy (1.18 ± 0.63 mm) for primary cases. The discov-
ered landmarks had an overall mean inaccuracy of 0.79 
± 0.57 mm and 0.82 ± 0.60 mm for primary and all cases, 
respectively.

To determine the center of the femoral head, two sce-
narios are probable according to expert preference. The 
landmark can be determined directly within one point in 
the center of the head or calculated from the fitted circle 
using 3 points on the femoral head counter (femoral head 
contour top, femoral head contour medial, and femoral 
head contour lateral). The estimated values for the center 
of the femoral head are achieved using direct and indi-
rect methods. The details of the results are presented in 
Table 2. The distance error between calculated landmarks 
using 3 points on the femoral counter for both target and 
detection, displayed the highest level of accuracy, with a 
mean error of 0.51 ± 0.36 mm and 0.61 ± 0.50 mm for pri-
mary and all cases, respectively.

To better understand error distribution for each land-
mark and compare model performance between each 
landmark, the boxplot on all test data and histogram on 
test data excluding failed cases are reported, respectively 
(Fig. 5A and B).

Angle accuracy
For a better model assessment, final angles’ values 
(MFMTA, MLDFA, MPTA, LDTA, and JLCA) were 
acquired using our approach estimation for landmarks 
and compared with angles values using landmarks eval-
uated by human experts. Table  3 displays the results 
in detail. The detection performance within the error 
range of 2° was 95.6% for all angles. For the failed cases, 
the median and maximum errors were presented. The 

Table 1  Results from various anatomical landmarks on the femur and tibia. The failed cases’ columns display the proportion of 
unsuccessful cases, the median, and the maximum absolute error for this group. The success rates define the accuracy (excluding 
failed ones) for primary and all cases. The final row displays the results averaged over all landmarks. The absolute error (L1) is expressed 
in millimeters

Failed cases (error more than 3 mm) Accuracy (excl. failed cases) 
for primary cases

Accuracy (excl. failed 
cases) for all cases

Bone type Landmark % Failure Median Max Mean ± SD Median Mean ± SD Median

Femur Femoral Head Contour Top 0% - - 0.62 ± 0.34 0.57 0.65 ± 0.41 0.56

Femoral Head Contour Medial 4% 4.59 5.65 1.04 ± 0.65 0.90 1.03 ± 0.64 0.84

Femoral Head Contour Lateral 8% 3.64 4.58 1.04 ± 0.57 0.96 1.18 ± 0.64 1.10

Femoral Head Center 0% - - 0.89 ± 0.41 0.93 0.96 ± 0.45 1.00

Femoral Trochlear Notch 0% - - 0.33 ± 0.24 0.29 0.33 ± 0.25 0.30

Femoral Lateral Condyle 10% 4.38 4.41 0.77 ± 0.63 0.52 0.91 ± 0.72 0.72

Femoral Medial Condyle 4% 3.27 3.39 0.96 ± 0.82 0.59 0.98 ± 0.81 0.63

Tibia Tibial Lateral Condyle 4% 3.10 3.17 1.18 ± 0.63 1.03 1.15 ± 0.73 1.03

Tibial Medial Condyle 2% 3.24 3.24 1.03 ± 0.65 0.95 1.04 ± 0.76 0.95

Tibial Eminence 0% - - 0.70 ± 0.43 0.60 0.66 ± 0.40 0.52

Tibial Distal Mid-Point 0% - - 0.58 ± 0.50 0.42 0.59 ± 0.47 0.82

Tibial Distal Medial Point 0% - - 0.49 ± 0.27 0.45 0.48 ± 0.27 0.46

Tibial Distal Lateral Point 2% 3.23 3.23 0.68 ± 0.45 0.67 0.70 ± 0.43 0.64

Average all 2.6% 3.39 4.58 0.79 ± 0.57 0.68 0.82 ± 0.60 0.67
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accuracy of successful detections was assessed using 
the mean, median, and standard deviation. With a 
mean error of 0.19 ± 0.17°, the MFMTA displayed the 
highest accuracy level, while the LDTA displayed the 
lowest accuracy level (0.91 ± 0.51°). The discovered 
angles had an overall mean inaccuracy of 0.45 ± 0.42° 

and 0.43 ± 0.39° for primary and all cases, respectively. 
Error distribution for each calculated angle on all test 
data is shown using boxplots (Fig. 5C). The mean error 
value of the model for each angle on test data exclud-
ing failed cases is also presented using a histogram 
(Fig. 5D).

Table 2  Results from various methods to detect the center of the femoral head. The failed cases’ columns display the proportion of 
unsuccessful cases, the median, and the maximum absolute error for this group. The success rates define the accuracy (excluding 
failed ones) for primary and all cases. The absolute error (L1) is expressed in millimeters

Error type Failed Cases (error more than 3 mm) Accuracy (excl. failed cases) 
for primary cases

Accuracy (excl. failed 
cases) for all cases

% Failure Median Max Mean ± SD Median Mean ± SD Median

Direct femoral head center vs its estimation 0% - - 0.89 ± 0.41 0.93 0.96 ± 0.45 1.00

Direct femoral head center vs calculated center 
using three estimated points

0% - - 1.12 ± 0.63 1.03 1.19 ± 0.62 1.11

Calculated center using 3 points vs calculated 
center using estimated 3 points

2% 4.49 4.49 0.51 ± 0.36 0.41 0.61 ± 0.50 0.46

Fig. 5  Boxplot to describe A landmarks’ L1 error and C) angles’ L1 error on all test data, and histogram to present B landmarks’ mean L1 error and D 
angles’ mean L1 error for all test data excluding failed cases
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Classification agreement
To assess the ultimate effect of landmark error on 
orthopedic diagnosis, the authors employed a classifi-
cation method. The clinical classifications for angles are 
divided into three categories: normal, lower than nor-
mal, and higher than normal. According to Paley, the 
normal range for each indicator is specified through 
the average range of many healthy adults’ indicators 
(described in section  1). In this study, each angular 
indicator was calculated using the estimated landmark 
positions for all cases. Subsequently, each indica-
tor was assigned to one of the categories based on its 
magnitude relative to Paley’s established thresholds. 
For ground truth validation, we computed the angu-
lar indicators using manually identified landmarks and 
categorized them according to the same thresholds. A 
classification was considered correct if the estimated 
category matched the ground truth category; otherwise, 
it was considered a misclassification (binary threshold). 
Selecting classification thresholds is crucial for opti-
mizing diagnostic performance. If set too leniently, 
unhealthy conditions could be misclassified as nor-
mal (false negatives), while thresholds set too strictly 
could misidentify normal variations as abnormal (false 
positives). To assess classification efficiency, we defined 
accuracy as the ratio of the number of correctly classi-
fied cases to the total number of cases. The classifica-
tion accuracy between the three classes for both failed, 
and successful cases are determined (Table  3). For all 
cases, the accuracy of angle class assignment between 
our model and expert measurements is about 94%. 
MPTA and MLDFA have the highest accuracy (100%) 
for both primary and all cases; LDTA has the lowest 

accuracy of 80% and 82% for primary and all cases, 
respectively.

The accuracy levels of the test group participants were 
also assessed. While the patient (considering both legs) 
with the lowest accuracy (Fig. 6A) had a prediction error 
of 1.16 ± 0.70 mm, the person with the highest accuracy 
level (Fig. 6B) had a prediction error of 0.61 ± 0.43 mm. 
The figure provides the referred and estimated landmarks 
for these two instances to illustrate this prediction error 
level. Considering each case referring to one leg, the low-
est and highest accuracy cases had a prediction error of 
1.38 ± 0.69 mm and 0.55 ± 0.28 mm for landmark detec-
tion. For the angle detection, the case with the lowest and 
highest accuracy had a prediction error of 1.98 ± 1.35° 
and 0.12 ± 0.43°, respectively.

The overall outcome of our model on full-leg input 
x-ray is shown in Fig. 7. Red spots indicate the estimated 
landmarks. The Red line indicates the locations of the 
LFDA, MPTA, LDTA, MFMTA, LMA, and JACL angles. 
Their values for both legs are also presented in white.

Discussion
A novel, pyramid-based approach is proposed to deter-
mine the type and severity of human lower limb deformi-
ties for osteotomy surgery. The approach employs a deep 
neural network of the CNN architecture to determine 
such characterizing angles as MFMTA, MLDFA, MPTA, 
LDTA, and JLCA using a set of landmarks that are auto-
matically detected by the CNN. Each calculated angle 
is then categorized as normal, greater than normal, or 
smaller than normal based on the MD-predefined nor-
mal range for each angle.

Table 3  Results from the MFMTA, MLDFA, MPTA, LDTA, and JLCA angles for both legs using discovered landmarks. The unsuccessful 
cases are identified using the absolute error (L1 loss) between our estimates and the expert measures. Within this category, the first 
four columns display the proportion of failed cases, absolute angle error, maximum error, and classification error (between normal, 
greater than normal, and lower than normal). The success rates define the accuracy (excluding failed ones) for primary and all cases. 
The final row displays the results averaged over all angles. The error is expressed in degrees

Angle type Failed cases (error more than 2°) Accuracy (excl. failed cases) for primary 
cases

Accuracy (excl. failed cases) for all cases

% Failure median 
[Degree]

Max angle error [Degree] Classification 
error (accuracy)

angle error [Degree] Classification 
error 
(accuracy)

MLDFA 2% 4.29 4.29 0.32 ± 0.22 100% 0.32 ± 0.22 100%

MPTA 4% 3.27 4.20 0.42 ± 0.38 100% 0.39 ± 0.33 100%

LDTA 8% 2.52 6.26 0.91 ± 0.51 80% 0.85 ± 0.49 82%

MFMTA 0% - - 0.19 ± 0.17 97% 0.20 ± 0.16 98%

JLCA 8% 2.81 4.57 0.44 ± 0.39 86% 0.42 ± 0.37 89%

Average 4.4% 3.08 6.26 0.45 ± 0.42 94% 0.43 ± 0.39 94.1%
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Using feedback mechanisms in multiscale feature 
extraction in high-resolution images are crucial for sev-
eral reasons: I. Feedback mechanisms allow the model 

to refine its feature extraction process based on initial 
outputs. This iterative refinement helps in capturing 
fine details in high-resolution images, leading to more 
precise landmark detection. II. High-resolution images 
often contain objects or landmarks at various scales. A 
feedback mechanism can help integrate features from 
multiple scales effectively, ensuring that both local and 
global landmarks are accurately detected. III. Feedback 
from higher-level features can extract lower-level fea-
tures, helping the model understand the context in which 
landmarks appear. This is particularly useful in high-res-
olution images where both global and local features can 
influence the perception of a landmark. IV. High-reso-
lution images may have noise or unwanted distortions. 
Feedback mechanisms identify and reduce the impact 
of these issues, leading to more reliable landmark detec-
tion. V. As new images are processed, feedback allows the 
model to adjust its strategies based on what it learns from 
the data. This means it can handle variations like changes 
in contrast, lighting or obstructions.

The most recent efforts use first- and second-order 
detection to find regions of interest at joints and land-
mark coordinates, respectively [7, 8, 13]. In compari-
son, our approach gets around high-resolution datasets 
by constructing multiresolution Gaussian pyramids to 
learn features in many scales in a single-step detection. 
This eliminates the need to extract each region of inter-
est independently. Tack et  al. used pre-trained CNN 
(ResNet) to identify the regions of joints. However, some 
failed cases were reported based on the different contrast 
of images. Additionally, certain outliers were displayed in 
landmark regression because of significant bone deformi-
ties and low image contrast. Even so, the total HKA 

Fig. 6  The best and worst landmark predictions for the test group. A had the most accurate estimate (0.61 ± 0.43 mm), while B had the worst (1.16 
± 0.70 mm in prediction error). The experts produced the red points, while our model produced the blue ones

Fig. 7  A representation of the overall result. Red spots are estimated 
landmarks, and white lines are goal angles for both legs based 
on estimated landmarks
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measurement and landmark detection error are accepta-
ble for patients without primary treatment [7]. While Pei 
et  al. used U-net to benefit from segmentation, Nguyen 
et al. used CNN to determine the location of the joints. 
However, Pei et al. reported a 0.5° average error between 
the automatic results and the manual measurements for 
the patient without primary treatments for the HKA 
angle. Nguyen et  al. also reported 0.59°,1.01°, and 1.08° 
average error for HKA, MLDFA, and MPTA, respec-
tively [8, 13]. Our approach identifies the entire range of 
angles used in lower limb evaluations to precisely assess 
deformities. The approach easily deals with high-resolu-
tion images, cases with primary treatment like total hip 
arthroplasty, and more promising results are reported 
(Table 4).

For our high-resolution lower-limb dataset, the success 
of our approach is encouraging. Three levels of perfor-
mance are shown for the suggested approach: I. deter-
mining the error between the landmarks’coordinates, 
which are automatically provided by the proposed 
approach, and the manually measured values used as 
standard references for the test images. II. the difference 
between the defined angles using manually measured 
values and automatically estimated landmarks. III. clas-
sification error for angles range between our estimated 
classification and standard references.

Some failed cases were identified due to high errors 
in landmark positioning and indicator evaluation. Those 
cases primarily relate to points that are inherently chal-
lenging to specify manually. To address this issue, an 
effective method is to define difficult landmarks in rela-
tion to others (the authors employed the same idea for 
the central point of the femoral head). Increasing the 
amount of training data is another potential solution. 
Utilizing more technicians for data labeling can also help 
reduce human error for manual labeling. The other pri-
mary reason for high errors, particularly in the joints, is 
the shadowing effect in imaging. A better imaging device 
with higher contrast that clearly defines the joint lines 
would help resolve this issue.

3D abnormalities, such as rotational deformities, can-
not obviously be detected through 2D X-ray imaging. 
Furthermore, in cases with rotational deformities, the 
coronal plane, which is employed to define all 2D land-
marks and indicators, becomes misaligned. None of the 
data used in this study has a torsional deformation com-
ponent, therefore in this model all the data was used 
to detect 2D landmarks. For general application of the 
model, the user needs to remove cases with a torsional 
deformation component. For these cases 3D imaging 
is recommended to get a better understanding of the 
patient’s anatomy and deformities.

Conclusion
In this study, the pyramid-based approach proved quite 
effective results for automatic 2D lower-limb annotation 
for high-resolution x-ray images. The proposed approach 
involves constructing a pyramid using an adaptively sized 
2D Gaussian patch over each scale and feeding those 
patches to a modified ResNet architecture to extract fea-
tures at each individual resolution and finally estimating 
the coordinates of target landmarks using an integrating 
neural network. Results from multiple simulated experi-
ments showed that the proposed approach can provide 
the required precision for direct clinical applications. 
Additionally, our system didn’t need additional segmen-
tation or region of interest detection processes. We antic-
ipate that the benefits of our approach will make planning 
for osteotomies and lower-limb analysis more expedient.

The work reported here can be extended to utilize 3D 
data to evaluate 3D angular indicators like femoral and 
tibial rotations that do not appear in 2D images [25]. We 
envision analyzing the 3D data by estimating the land-
mark position using a multi-view technique. A pyra-
mid-based network is utilized to estimate the landmark 
position for each view, followed by a 3-layer neural net-
work that serves as a fusion strategy to determine the 3D 
locations of the landmarks [22]. This constitutes part of 
an ongoing research by the authors.
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